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An example of a study using time-series analysis 
work by Mark Scheuerell at NWFSC, Seattle 

What evidence exists 
to support the 
hypothesis that 

large-scale ocean-
climate drives 

fluctuations in Alaska 
salmon survival? 



Alaska Chinook salmon 

AYK (5) 

Kodiak (3) SE (5) 

Cook(2) 



The data: time series of log recruits per spawner 
versus brood year for AYK region 

Estimate 

of 

survival 

Different 

stocks/popula

tions within 

one of the 

Alaska 

regions 



Raw Data: 15 time series 

(5 of 15 shown) 
Can be described by 3 

overall patterns 

The analysis 
(Dynamic Factor Analysis) 



Results: 3 large-scale trends/drivers 
The different stocks weight on these differently. 



Next analysis looks at correlation between the overall 
trends and large-scale environmental indicators 

• Pacific Decadal Oscillation 
• Arctic Oscillation Index 
 

• Aleutian Low Pressure 
• North Pacific Index 
 



Introduction to time-series analysis in R 

• Characteristics of time 
series (ts) 

o What is a ts? 
o Classifying ts 
o Trends 
o Seasonality (periodicity) 
o Stationarity 

• Time-series models 

o White noise 

o Random walks 

o Autoregressive (AR) models 

o Moving average (MA) models 

o ARMA models 

• Diagnostics for time series 

o Autocorrelation functions (ACF) 

o Correlograms 



What is a time series? 

• A time series (ts) is a set of observations 
taken sequentially in time 

• A ts can be represented as a set 

 {xt : t = 1,2,3,…,n} = {x1,x2,x3,…,xn}   

• For example, 

 {10,31,27,NA,53,15} 

• Univariate (e.g. total # of fish caught) 
or multivariate (e.g. # of each species 
caught) 

 

 



Example of a time series of water usage 
typical versus during hockey championship game 

Time of Day 

Water 

Usage 



How do we describe a time series? 

observationt = trend + cycle + et 

et = a time series also  

Often the objective is to estimate or describe the trend 

and cycle in a time series, but to do this we need to 

describe/model the et. 
 

Other times the objective is to model the et since we are 

trying to understand what drives the year-to-year 

(month-to-month) variation. 



Cycles or seasonality in a time series 
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Trend in a time series 
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Stationarity of time series 

• Stationarity describes a particular statistical properties of 
a time series. 

• In general, a time series is said to be stationary if there is 

1) no systematic change in mean or variance, 

2) no systematic trend up or down, and 

3) no periodic variations or seasonality 

We typically remove the trend and cycles and 

treat et as stationary. 



Describing a time series: classical 
decomposition 

• Classical decomposition of an observed time series is a 
fundamental approach in time series analysis 

• The idea is to decompose a time series {xt} into a trend, 
a seasonal component, and a remainder (et) 

    

observationt = trend + cycle + et 

et = a time series also  
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Classic time-series models 

• A time series model for {xt} is a specification of the 
joint distributions of a sequence of random variables 
{Xt} of which {xt} is thought to be a realization. 

• Time-series models – these describe the et 

o White noise 

o Autoregressive (AR) models 

o Moving average (MA) models 

o ARMA models 

• Random walks – an important type of non-
stationary ts 



Autocorrelation function (ACF): a powerful way to 
summarize a ts 

• ACF measures the correlation of a time series against a 
time-shifted version of itself (& hence “auto”) 
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y-axis is autocorrelation rk (-1 to 1); 

lag-0 correlation (r0) is always 1 (it’s a ref point); 

a 95% conf interval 



Correlogram for deterministic trend 
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Correlogram for sine wave 
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Correlogram for trend + season 
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Correlogram for random sequence 
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Correlogram for real data 
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Classic time-series models 

• A time series model for {xt} is a specification of the 
joint distributions of a sequence of random variables 
{Xt} of which {xt} is thought to be a realization. 

• Time-series models – these describe the et 

o White noise 

o Autoregressive (AR) models 

o Moving average (MA) models 

o ARMA models 

• Random walks – an important type of non-
stationary ts 



White noise 
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white noise xt are 

1)  independent, and 

2)  identically distributed with a mean of zero 



Random walk (RW) 
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A time series {xt : t = 1,2,3,…,n} is a random walk if 

1)  xt = xt-1 + wt, and 

2)  wt is white noise 

Random walks are NOT stationary! 



Autoregressive (AR) models 

• An autoregressive model of order p, or AR(p), 
is defined as 

xt = f1xt-1 +f2xt-2 + +fpxt-p +wt

where we assume 

1)  wt is WN, and 

2)  fp ≠ 0 for order-p process 

• Note: RW model is special case of AR(1) with f1 = 1 
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Examples of AR(1) processes 
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AR(p) can be stationary! 



Examples of AR(1) processes 
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Partial autocorrelation function 

• The partial autocorrelation function (PACF) measures the 
linear correlation of a series xt and xt+k with the linear 
dependence of {xt-1,xt-2,…,xt-(k-1)} removed 

fkk =
Cor x1, x0( ) = r 1( ) if k =1

Cor xk - xk
k-1, x0 - x0

k-1( ) if k ³ 2

ì

í
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xk
k-1 =b1xk-1 +b2xk-2 + +bk-1x1

x0

k-1 =b1x1 +b2x2 + +bk-1xk-1

• It is defined as 



Autoregressive (AR) models 

• An autoregressive model of order p, or AR(p), 
is defined as 

xt = f1xt-1 +f2xt-2 + +fpxt-p +wt

where we assume 

1)  wt is WN, and 

2)  fp ≠ 0 for order-p process 

• Note: RW model is special case of AR(1) with f1 = 1 



ACF & PACF for AR(3) processes 
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PACF for AR(p) processes 
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Moving average (MA) models 

• A moving average model of order q, or MA(q), 
is defined as 

xt =wt +q1wt-1 +...+qqwt-q

where wt is WN (with 0 mean) 

• It is simply the current error term plus a 
weighted sum of the q most recent error 
terms 

• Because MA processes are finite sums of 
stationary WN processes, they are themselves 
stationary 



Examples of MA(q) processes 
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Autoregressive moving average models 

• A time series is autoregressive moving average, 
or ARMA(p,q), if it is stationary and 

xt = f1xt-1 + +fpxt-p +wt +q1wt-1 + +qqwt-q

• Combines both AR(p) and MA(q) 



Examples of ARMA(p,q) processes 
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ACF for ARMA(p,q) processes 
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PACF for ARMA(p,q) processes 

5 10 15 20

-0
.2

0
.2

0
.6

Lag

P
a

rt
ia

l 
A

C
F

ARMA(3,1): f1 = 0.7, f2 = 0.2, f3 = -0.1, q1 = 0.5

5 10 15 20

-0
.4

-0
.2

0
.0

0
.2

0
.4

Lag

P
a

rt
ia

l 
A

C
F

ARMA(2,2): f1 = -0.7, f2 = 0.2, q1 = 0.7, q2 = 0.2

5 10 15 20

-0
.4

0
.0

0
.4

0
.8

Lag

P
a

rt
ia

l 
A

C
F

ARMA(1,3): f1 = 0.7, q1 = 0.7, q2 = 0.2, q3 = 0.5

5 10 15 20

-0
.4

0
.0

0
.4

0
.8

Lag

P
a

rt
ia

l 
A

C
F

ARMA(2,2): f1 = 0.7, f2 = 0.2, q1 = 0.7, q2 = 0.2



Difference to remove trend/season 

• Differencing is a very simple means for removing 
a trend or seasonal effect 

• The 1st-difference removes a linear trend, a 2nd-
difference would remove a quadratic trend, etc. 

• For seasonal data, using a 1st-difference with lag 
= period removes both trend & seasonal effects 

• Pro: no parameters to estimate 

• Con: no estimate of stationary process 



Using ACF & PACF for model ID 

ACF PACF 

AR(p) Tails off Cuts off after lag-p 

MA(q) Cuts off after lag-q Tails off 

ARMA(p,q) Tails off (after lag [q-p]) Tails off (after lag [p-q]) 



Topics for this lab 

• ts class in R 

• Plotting ts objects 

• Understand covariance & correlation 

• Examine some simple ts models 

• Use diff() for trend/season removal 

• Examine properties via acf() & pacf() 

• Examine AR(p) models 

• Examine MA(q) models 

• ARMA(p,q) models via ‘arima.sim()’ 


